當(dāng)前位置:高考升學(xué)網(wǎng) > 要點(diǎn)知識 > 正文
高三數(shù)學(xué)知識點(diǎn)公式大全
銳角三角函數(shù)公式
sinα=∠α的對邊/斜邊
cosα=∠α的鄰邊/斜邊
tanα=∠α的對邊/∠α的鄰邊
cotα=∠α的鄰邊/∠α的對邊
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2是sinA的平方sin2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
三倍角公式推導(dǎo)
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
輔助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
推導(dǎo)公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
=2sina(1-sin2a)+(1-2sin2a)sina
=3sina-4sin3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos2a-1)cosa-2(1-sin2a)cosa
=4cos3a-3cosa
sin3a=3sina-4sin3a
=4sina(3/4-sin2a)
=4sina[(√3/2)2-sin2a]
=4sina(sin260°-sin2a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina_2sin[(60+a)/2]cos[(60°-a)/2]_2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos3a-3cosa
=4cosa(cos2a-3/4)
=4cosa[cos2a-(√3/2)2]
=4cosa(cos2a-cos230°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa_2cos[(a+30°)/2]cos[(a-30°)/2]_{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述兩式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
兩角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化積
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
積化和差
sinαsinβ=[cos(α-β)-cos(α+β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
誘導(dǎo)公式
sin(-α)=-sinα
cos(-α)=cosα
tan(—a)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
sin(π-α)=sinα
cos(π-α)=-cosα
sin(π+α)=-sinα
cos(π+α)=-cosα
tanA=sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
誘導(dǎo)公式記背訣竅:奇變偶不變,符號看象限
萬能公式
sinα=2tan(α/2)/[1+tan^(α/2)]
cosα=[1-tan^(α/2)]/1+tan^(α/2)]
tanα=2tan(α/2)/[1-tan^(α/2)]
其它公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可
(4)對于任意非直角三角形,總有
tanA+tanB+tanC=tanAtanBtanC
證:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得證
同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
(9)sinα+sin(α+2π/n)+sin(α+2π_2/n)+sin(α+2π_3/n)+……+sin[α+2π_(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π_2/n)+cos(α+2π_3/n)+……+cos[α+2π_(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
高三數(shù)學(xué)知識點(diǎn)歸納總結(jié)
一個(gè)推導(dǎo)
利用錯(cuò)位相減法推導(dǎo)等比數(shù)列的前n項(xiàng)和:Sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
兩個(gè)防范
(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.
(2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.
三種方法
等比數(shù)列的判斷方法有:
(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_),則{an}是等比數(shù)列.
(2)中項(xiàng)公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_),則數(shù)列{an}是等比數(shù)列.
(3)通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N_),則{an}是等比數(shù)列.
注:前兩種方法也可用來證明一個(gè)數(shù)列為等比數(shù)列.
高三數(shù)學(xué)必考知識點(diǎn)總結(jié)
1.不等式的定義
在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.
2.比較兩個(gè)實(shí)數(shù)的大小
兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來定義的,
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,則有>1?;=1?;<1?.
概括為:作差法,作商法,中間量法等.
3.不等式的性質(zhì)
(1)對稱性:a>b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可開方:a>b>0?(n∈N,n≥2).
復(fù)習(xí)指導(dǎo)
1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.
2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的`代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.
3.“兩條常用性質(zhì)”
(1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0
③a>b>0,0;④0
(2)若a>b>0,m>0,則
①真分?jǐn)?shù)的性質(zhì):<;>(b-m>0);
面對考生的成績波動,家長和老師都看在眼里急在心里。尤其是即將高考的學(xué)生成績浮動大,會影響備考的狀態(tài)和學(xué)習(xí)的積極性。針對這個(gè)大部分家長都很關(guān)心的問題,我們來看看王金戰(zhàn)老師是怎么處理的,在他的案例中或許你會更受啟發(fā),F(xiàn)實(shí)案例一復(fù)讀班尖子生2分之差無緣清華,穩(wěn)定的成績掩蓋了不少問題。我的復(fù)讀班曾經(jīng)招收了一個(gè)學(xué)生,她離清華大學(xué)的錄取分?jǐn)?shù)線只差2分。這個(gè)學(xué)生高三時(shí)三次重要的模擬考試都考了全班第四名,報(bào)志愿的...查看更多
中國江蘇網(wǎng)2月6日訊明天起全市中小學(xué)就放寒假啦。不過,對于我市高三學(xué)生來說,“最長學(xué)期”尚未結(jié)束。昨天和今天,高三的同學(xué)迎來今年全市首次模擬統(tǒng)考。由于考慮到放假,這次模擬考將高考的三天時(shí)間壓縮為兩天,昨天開考的是語文和數(shù)學(xué)兩科,今天將進(jìn)行英語和選修科目的模擬考試。從首日考試情況來看,一向被視作輕松的語文,考生考得并不輕松,數(shù)學(xué)難度保持平穩(wěn)。 【考生感受】 語文不簡單數(shù)學(xué)保持平穩(wěn) ...查看更多
2014湖北高三2月聯(lián)考數(shù)學(xué)理試題及答案命題學(xué)校:江夏一中考試時(shí)間:2月6日下午15:00—17:00 試卷滿分:150分一、選擇題:本大題共10小題,每小題5分,共50分. 在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.命題學(xué)校:江夏一中考試時(shí)間:2月6日下午15:00—17:00 試卷滿分:150分一、選擇題:本大題共10小題,每小題5分,共50分. 在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)...查看更多
坐在電腦前,敲下這幾個(gè)字后沉思良久,不知道如何下筆,曾想象過多少次高三的結(jié)束,想象過多次自己的后高考時(shí)代,可如今沒有了學(xué)生,沒有了課堂,坐在辦公室里卻又倍感無聊。 好吧,開始我的總結(jié)吧! 一、開始-一輪復(fù)習(xí) 當(dāng)理科數(shù)學(xué)還在繼續(xù)他們的選修系列學(xué)習(xí)的時(shí)候,高三文科數(shù)學(xué)的復(fù)習(xí)工作已經(jīng)要開始了,一輪的復(fù)習(xí)定在了在高二的下學(xué)期,春節(jié)過后。而23,24兩班的復(fù)習(xí)比主校要稍早一些,年前就已經(jīng)開...查看更多
今年我校學(xué)生在首次高考中取得了輝煌成績,4人考取清華大學(xué),3人被北大錄取,3人摘取了新鄉(xiāng)市文理狀元,其中劉辰辰以701分獲得河南省理科第二名,文科復(fù)讀班王辭源同學(xué)數(shù)學(xué)滿分150分。一本上線203人,上線率36%。二本上線389人,上線率70%,三本上線455人上線率81%。我班13班的劉辰辰、宋京京、孫大鵬、朱文靜4人考取了清華北大,我校前10名中,我班占有6名,共有33名同學(xué)一本上線,上線...查看更多
志愿者、志愿活動和志愿精
時(shí)間:2023-12-25 09:0:26人教版高中地理必修一知識
時(shí)間:2023-09-20 19:0:44高中地理重要知識點(diǎn)總結(jié)大全
時(shí)間:2023-09-15 22:0:55高中地理必修一知識點(diǎn)總結(jié)
時(shí)間:2023-09-21 05:0:56